2023年6月5日 星期
标题导航

神舟十五 英雄凯旋

  神舟十五号载人飞船返回舱成功着陆

  神舟十五号载人飞行任务取得圆满成功

  新华社酒泉6月4日电 6月4日6时33分,神舟十五号载人飞船返回舱在东风着陆场成功着陆,航天员费俊龙、邓清明、张陆全部安全顺利出舱,神舟十五号载人飞行任务取得圆满成功。

  据中国载人航天工程办公室介绍,5时42分,按照飞行程序,神舟十五号载人飞船轨道舱与返回舱成功分离。之后,飞船返回制动发动机点火,返回舱与推进舱分离,返回舱成功着陆,担负搜救回收任务的搜救分队及时发现目标并抵达着陆现场。返回舱舱门打开后,医监医保人员确认航天员身体健康。

  神舟十五号载人飞船于2022年11月29日从酒泉卫星发射中心发射升空,随后与天和核心舱对接形成组合体。3名航天员在轨驻留期间,完成大量空间科学实(试)验,进行了4次出舱活动,圆满完成舱外扩展泵组安装、跨舱线缆安装接通、舱外载荷暴露平台支撑杆安装等任务,配合完成空间站多次货物出舱任务,为后续开展大规模舱外科学与技术实验奠定了基础。

  作为迄今为止执行任务时平均年龄最大的航天员乘组,3名航天员不仅刷新了中国航天员单个乘组出舱活动次数的纪录,还见证了中国空间站全面建成的历史时刻。

  欢迎回家

  创新科技为神舟十五号返程保驾护航

  6月4日,神舟十五号载人飞船返回舱在东风着陆场成功着陆,航天员费俊龙、邓清明、张陆全部安全顺利出舱,神舟十五号载人飞行任务取得圆满成功。本次任务中,有哪些创新科技为神舟十五号返程保驾护航?

  “天上地下”保障飞船高精度返回

  对于神舟系列飞船而言,返回再入GNC技术直接关系航天员的生命安全。以此次返回任务告捷为标志,我国自神舟十二号载人飞船起全面升级的,以自主快速交会对接、自主自适应预测再入返回制导为特征的GNC系统,完成全面更新换代。

  我国的飞船返回再入GNC技术经历了两代,第一代被称为“标准弹道自适应制导方法”,而神舟十二号到神舟十五号这一批次载人飞船采用的是“自适应预测制导方法”,是第二代返回再入技术。加之我国“星光—卫星星座—捷联惯性组合导航”技术的应用,使神舟十五号载人飞船整个返回过程可以实现高精度自主导航。

  “采用第二代返回技术后的最差返回精度,要比第一代最好的都好!”航天科技集团五院载人飞船系统副总设计师胡军说。如果采用第一代技术,当出现大范围的轨道条件变化时,就需要地面进行人工干预;如果采用第二代技术,GNC系统则可以自主适应,且可以实现一系列“更强”“更优”。

  此外,在主着陆场,中国电科布设便携站、机载站、车载站、固定站等站型及多型号卫通系统,编织致密安全的测控通信网,像“听诊器”“遥控器”“手机”一样,实时测量飞行轨道,监测返回舱供电、温度、气压等参数及航天员各项生理参数,实时传送地面发出的指令,指挥返回舱变轨、调整姿态,实时传输话音、图像数据,让地面可以与航天员实时沟通。

  “超级大伞”护佑飞船安稳着陆

  当神舟十五号载人飞船返回舱快要落向地面时,一顶红白相间的大伞如约绽放,守护着返回舱徐徐飘落、稳稳着陆。这顶特大型降落伞是航天员的“生命之伞”,由航天科技集团五院508所研制,伞衣面积达1200平方米,若在地面铺展开来大约可覆盖三个标准篮球场。

  1200平方米的神舟飞船主伞作为国内最大的航天器降落伞,由7000多个零部件组成。整个伞的缝线长达10千米,需要十几位加工人员密切合作加工3至4个月才能完成。仅主份降落伞的加工工序,就有30多道。

  在航天科技集团五院508所降落伞研制中心,工人们拿着卡尺,仔细地测量每块布的大小、每个针脚的间距。每顶大伞都由1920块楔形小布片组成,因为载人航天对精度要求高,不能像别的降落伞在大型机械裁床上加工,只能采用人工剪裁,一层一层地裁。

  从1999年神舟一号成功发射返回,到2003年神舟五号完成我国首次载人飞行,再到如今神舟十五号荣耀归来,降落伞不仅为神舟系列飞船15次绽放,且实现持续创新优化。在神舟十二号到神舟十五号这一批的飞船任务中,回收着陆分系统批次产品研制涉及5大类共12项技术状态更改。

  多项科技助力地面精准搜救

  当神舟十五号载人飞船返回舱顺利返回地球家园后,如何迅速找到返回舱和航天员成为地面搜救人员最关心的事情。

  航天科技集团五院西安分院研制的返回舱天线网络在飞船着陆后,通过开关选择接通朝向地面上方的天线,确保地面搜救人员可以通过天线网络来找到返回舱。

  天线网络负责为通信信号、测控信号、定位信号、搜救信号建立独立通路,保障其传输的稳定和通畅,搭建神舟飞船返回舱与地面信号传输的重要通道和桥梁,有效确保飞船和航天员安全顺利“回家”。

  中国电科针对搜索回收任务区域范围广、救援难度大等难点,研发回收区北斗态势系统,并不断迭代升级,利用北斗导航系统定位和短报文功能,构建指挥中心、前方指挥、搜索平台三位一体的指挥体系。

  该系统能通过北斗导航卫星对直升机、车辆等搜救载体实时定位,并利用短报文功能实时将位置信息发送给指挥中心。指挥型终端像“智慧大脑”,被部署在指挥中心,能够实时接收、显示机载、车载终端回传的位置信息,使现场指挥人员实时掌控搜救载体的位置和运动态势,及时指挥搜救力量向返回舱落点移动。

  我国载人飞船

  黑障区跟踪测量

  取得重大突破

  新华社酒泉6月4日电 神舟十五号载人飞船6月4日清晨成功着陆东风着陆场,科技人员对其在穿越黑障区时的稳定跟踪,表明我国在载人飞船返回穿越黑障区跟踪测量难题上取得重大突破。

  飞船返回地球时,会与大气层发生剧烈摩擦,温度剧增,导致气体分子与飞船表面被烧蚀的材料均发生电离。这些不断产生的电离气体包裹在飞船周围,形成等离子体鞘套,对电磁波产生吸收衰减、折射、反射、散射等效应,导致飞船内部与外界的无线电通信异常乃至中断,这就是所谓的黑障现象,这段过程也被称为黑障区。

  飞船穿越黑障区时,只能依靠雷达和光学设备进行跟踪测量,能否在此期间稳定跟踪飞船,不论是对出黑障后的飞船测控引导,还是及时预报飞船落点都极为重要。酒泉卫星发射中心敦煌测控区任务区间涵盖了飞船返回进出黑障区的全过程,是实现飞船在黑障区稳定跟踪的核心力量。

  据敦煌测控区指挥长曾强介绍,在神舟十五号载人飞船返回时,他们确定了“优化黑障区雷达跟踪方案托底,完善多云天气下光学跟踪策略求精”的总体思路,在雷达和光学两个方面形成合力,圆满完成了飞船在黑障区的跟踪测量任务。

  “发现目标,跟踪正常!”

  6月4日清晨,神舟十五号飞船返回舱刚进入黑障区,敦煌测控区光学组组长李长松便准确地捕捉到返回舱的实时高清图像,并通过车载通信设备第一时间传至北京飞行控制中心。

  “从神舟一号任务开始,为了解决飞船在黑障区的跟踪测量难题,我们一代代测控人接续攻关,联合多家科研机构,针对飞船在黑障区的雷达回波信号特点,不断完善针对性的信号检测和跟踪技术,现已具备了黑障区稳定跟踪飞船的能力。”测控区技术专家吴刚说。

  (本版图文均据新华社)